Superposition of Waves

 If two or more traveling waves are moving through a medium, the resultant wave function at any point is the algebraic sum of the wave functions of the individual waves.
 (Superposition principle).

$$y_{\text{Total}}(x,t) = y_1(x,t) + y_2(x,t)$$

Superposition of two harmonic waves

Individual wave functions:

$$y_1(x,t) = A\sin(kx - \mathbf{w}t)$$
$$y_2(x,t) = A\sin(kx - \mathbf{w}t - \Delta \mathbf{j})$$

Add according to superposition principle

$$y(x,t) = \left(2A\cos\frac{\Delta \mathbf{j}}{2}\right)\sin\left(kx - \mathbf{w}t - \frac{\Delta \mathbf{j}}{2}\right)$$

using trig identity for the sum of sines

$$\sin \mathbf{a} + \sin \mathbf{b} = 2\cos\left(\frac{\mathbf{a} - \mathbf{b}}{2}\right)\sin\left(\frac{\mathbf{a} + \mathbf{b}}{2}\right)$$

Constructive and destructive Interference

$$y(x,t) = \left(2A\cos\frac{\Delta \mathbf{j}}{2}\right)\sin\left(kx - \mathbf{w}t - \frac{\Delta \mathbf{j}}{2}\right)$$

- If $\Delta \varphi = 0$ or a multiple of 2π , then y_1 , y_2 are in phase and we have constructive interference. The amplitude of the combined wave is twice the original amplitude.
- If $\Delta \varphi = \pi$ (or an odd multiple of π), then y_1 , y_2 are <u>out</u> <u>of phase</u> and we have <u>destructive interference</u>. The amplitude of the combined wave <u>vanishes</u>.
- Phase difference $\Delta \varphi$ and path difference Δr :

$$\Delta r = |r_1 - r_2| = \frac{1}{2p} \Delta j \qquad \Delta j = \frac{2p\Delta r}{l}$$

Standing Waves

 If two waves with the same amplitude, frequency, wavelength, and phase travel in <u>opposite</u> directions, they form a <u>standing wave</u>. This wave does not travel.

$$y_1(x,t) = A\sin(kx - \mathbf{w}t)$$

$$y_2(x,t) = A\sin(kx + \mathbf{w}t)$$

$$y_T(x,t) = y_1(x,t) + y_2(x,t) = 2A\sin(kx)\cos(\mathbf{w}t)$$

• We note that there are <u>nodes</u> with zero amplitude and <u>antinodes</u> with maximum amplitude. Adjacent nodes are separated by $\lambda/2$, adjacent antinodes are also separated $\lambda/2$. The distance between a node and the next antinode is $\lambda/4$.